NUMBERS 6

Rules of Exponents: $a^n = a \bullet a \bullet a \bullet ... \bullet a$ (*n* factors *a*).

a is called the **base** while n is called the **exponent** and the result is called the **power**.

Rules for manipulating exponents are: $a^0 = 1$. $a^1 = a$. $a^{-n} = \frac{1}{a^n}$. $(a \cdot b)^n = a^n \cdot b^n$.

$$a^n \bullet a^m = a^{n+m}$$
. $(a^n)^m = a^{n \bullet m}$.

Fractional Exponents: $a^{1/n}$ means that $(a^{1/n})^n = a$. $a^{1/n}$ is called the **nth root** of a.

$$a^{1/2} = \sqrt{a}$$
. $a^{1/3} = \sqrt[3]{a}$. $a^{1/n} = \sqrt[n]{a}$. $a^{m/n} = (a^{1/n})^m$.

Special values: $2^5 = 32$, $3^5 = 243$, $2^{10} = 1024$, $(-1)^n = \pm 1$ as n is even or odd.

This means that $32(^{1/5} = 2, (243)^{1/5} = 3, (1024)^{1/10} = 2$.

 0^0 is not defined. If you ever get 0^0 then you have goofed.

Exponents can have any values, not just integers or fractions.

Learn to use your calculator to find any power of any number.

(MEMORIZE THESE RULES!!)

Rational Numbers: A **rational number** is any number which can be written as a ratio of two integers.

Any **rational number** can be written as a repeating (or terminating) decimal.

Any repeating (or terminating) decimal is a rational number.

Irrational Numbers: An **irrational number** is any number which cannot be written as a ratio of two integers.

An irrational number cannot be written as a repeating (or terminating) decimal.

Ex: Show that $\sqrt{2}$ is an irrational number.

Soln: Assume that $\sqrt{2}$ is not an irrational number. Then $\sqrt{2}$ is a rational number.

Then we can write $\sqrt{2}$ as a ratio of two integers: $\sqrt{2} = a/b$ where a and b are integers **having no common factor** (otherwise we divide out the common factor). Square both sides and multiply by b^2 to get $a^2 = 2b^2$.

Then a^2 must be an even number, so a must be an even number, say a = 2n.

Then $4n^2 = 2b^2$ so $b^2 = 2n^2$, so b must be an even number, say b = 2m.

But this means that a and b have a common factor (2) contrary to what we assumed.

Therefore we cannot write $\sqrt{2}$ as a ratio of two integers.

Therefore $\sqrt{2}$ cannot be a rational number.

Therefore $\sqrt{2}$ must be an irrational number.

(This means that $\sqrt{2}$ cannot be written as a repeating decimal.)

Ex: In fact, if P is a prime number then \sqrt{P} is an irrational number.

(This means that there are lots of irrational numbers. In fact there are far, far more irrational numbers than there are rational numbers.)

NUMBERS 6

Rationalizing Denominators: One often has to deal with strange looking denominators such as $\frac{9}{3+\sqrt{2}}$. Such denominators can be changed into rational denominators by using

$$\frac{(a+b)(a-b) = a^2 - b^2}{3+\sqrt{2}} = \frac{9}{3+\sqrt{2}} \left(\frac{3-\sqrt{2}}{3-\sqrt{2}}\right) = \frac{27-9\sqrt{2}}{3^2-\left(\sqrt{2}\right)^2} = \frac{27-9\sqrt{2}}{9-2} = \frac{27-9\sqrt{2}}{7} = \frac{27}{7} - \frac{9}{7}\sqrt{2}.$$

$$\underline{\text{Ex:}} \quad \frac{2}{\sqrt{17}} = \left(\frac{\sqrt{17}}{\sqrt{17}}\right) \frac{2}{\sqrt{17}} = \frac{2\sqrt{17}}{17}.$$

$$\frac{\text{Ex:}}{\sqrt{17}} \sqrt{17} \sqrt{17} = 17$$

$$\frac{\text{Ex:}}{\sqrt[7]{17}} = \frac{2}{17^{1/7}} = \left(\frac{17^{6/7}}{17^{6/7}}\right) \frac{2}{17^{1/7}} = \frac{2}{17} \sqrt[7]{17^6}.$$

This process of turning a wrong form denominator into a more acceptable form is called **rationalizing the denominator** and is frequently used in all levels of mathematics.

Numbers 6 PROBLEMS, Due Next Week

(NO CALCULATORS)

- a) Show that \sqrt{P} is an irrational number? (for top students only!!)
- b) Is $\frac{1}{2-\sqrt{2}}$ a rational number? Why?
- c) Evaluate $\sqrt[3]{\frac{(0.004)^4(0.0036)}{(120,000)^2}}$.
- d) Simplify: $\sqrt{196}$.
- e) We know that $\sqrt[3]{8} = 2$ since $2^3 = 8$. Compute $\sqrt[3]{1728}$.
- f) Round to the nearest whole number: $\sqrt{78}$.
- g) To which integer is $\sqrt{133}$ closest?
- h) Simplify: $4\sqrt{2}\sqrt{18}$.
- i) Express in simplest form: $\sqrt{12\frac{1}{4}}$.
- j) Give the letter corresponding to the largest number. (a) 2^{100} , (b) 3^{75} , (c) 5^{50} .

NUMBERS 6

3

k) Express in simplest form: $\sqrt{3^5 + 3^5 + 3^5}$.

- 1) Simplify: 256^{0.25}.
- m) Simplify: $\sqrt{18} \sqrt{8} + \sqrt{\frac{1}{2}}$.

n) What is the simplest radical form of $\sqrt[3]{4} \div \sqrt[6]{2}$.

- o) Find $\sqrt{\sqrt{2,560,000}}$.
- p) Simplify: $\sqrt{128} + \sqrt{72}$.
- q) Simplify: $\sqrt{2\frac{7}{9}}$.

r) Express in simplest form: $\sqrt{6} \times \sqrt{15} \times \sqrt{10}$.

s) Express in simplest form: $\sqrt[4]{81} \cdot \sqrt{81}$.

Evaluate:

t)
$$\left(\frac{3}{4}\right)^{-3}$$

u)
$$(0.02)^{-2}$$

v)
$$\left(\frac{64}{27}\right)^{2/3}$$

w)
$$\left(-37^3\right)^{1/3}$$

$$(x) - (-1)^{-17/23}$$

y)
$$17^{13}/17^{14}$$

z)
$$4^3 \cdot 17^0$$

aa)
$$9^{2.6} \bullet 9^{-1.8} / 9^{-0.2}$$

ab)
$$\frac{3^0 - 3^{-2}}{3^1 - 3(3^{-2})^2}$$

ac)
$$12^{3.1} (3^{4.3}) (12^{-1.6}) \cdot 3^{1.4} / 3^{4.2}$$

ac)
$$12^{3.1} (3^{4.3}) (12^{-1.6}) \cdot 3^{1.4} / 3^{4.2}$$
 ad) $\frac{(-3)^2 (-2x)^{-3}}{(x+1)^{-2}}$ when $x = 2$ ae) $\frac{2+2^{-1}}{5} + (-8)^0 - 4^{3/2}$

ae)
$$\frac{2+2^{-1}}{5}+(-8)^0-4^{3/2}$$

af)
$$4x^{-2/3} + 3x^{1/3} + 2x^0$$
 when $x = 8$

ag)
$$25^0 + 0.25^{1/2} - 8^{1/3} \cdot 4^{-1/2} + 0.027^{1/3}$$