NUMBERS 7

Units Digit: The **units digit** of a number is the digit in the units place of the number.

Ex: The units digit of 36,927.42 is 7.

Digit In Units Place: The units digit of a **product** of numbers equals the units digit of the product of the units digits of the numbers.

Ex: What is the units digit of 743 • 426?

Soln: The units digit of 743 is 3, and the units digit of 426 is 6, so $3 \times 6 = 18$, so the units digit of the product is 8.

Ex: What is the units digit of 2^{18} ?

Soln: Notice that the units digit of $2^5 = 32$ is 2. Write this as $2^5 \sim 2$.

$$2^{18} = 2^3 \cdot 2^{15} = 2^3 \left(2^5\right)^3 \sim 2^3 \left(2\right)^3 \sim 2^3 \cdot 2^3 = 2^6 = 2 \cdot 2^5 \sim 2 \cdot 2 = 4$$

so the units digit of 2^{18} is 4.

Ex: What is the units digit of 343^7 ?

Soln: The units digit is given by

$$343^7 \sim 3^7 = 3 \cdot 3^6 = 3(3^2)^3 = 3 \cdot 9^3 = 3 \cdot 9 \cdot 9^2 = 27 \cdot 81 \sim 7 \cdot 1 = 7$$
.

Number Sequence: A number sequence is a collection of numbers in a particular order.

<u>Ex</u>: -6, -8, -3, -2, 0, 4, 3, 10,... is a number sequence.

Arithmetic Sequence: An **arithmetic sequence** is a number sequence having a **constant difference** between consecutive numbers.

Ex: -5, -1, 3, 7, 11, 15,... is an arithmetic sequence since each number is 4 more than the previous number.

Ex: $\frac{11}{2}$, $\frac{19}{4}$, 4, $\frac{13}{4}$, $\frac{5}{2}$, $\frac{7}{4}$, 1, $\frac{1}{4}$, $-\frac{1}{2}$, $-\frac{5}{4}$, -2,... is an arithmetic sequence since each number is $\frac{3}{4}$ less than the previous number.

Geometric Sequence: A **geometric sequence** is a number sequence having a **constant ratio** between consecutive numbers.

Ex: 27, 9, 3, 1, $\frac{1}{3}$, $\frac{1}{9}$, $\frac{1}{27}$,... is a geometric sequence since each number is $\frac{1}{3}$ times the previous number.

Ex: $-\frac{1}{4}$, 1, -4, 16,... is a geometric sequence since each number is -4 times the previous number.

Number Series: A number series is the sum of a collection of numbers.

<u>Ex</u>: -6-8-3-2+0+4+3+10+... is a number series.

Arithmetic Series: An **arithmetic series** is the sum of an arithmetic sequence.

Ex: -5-1+3+7+11+15+... is an arithmetic series since each number in the sum is 4 more than the previous number.

Ex: $\frac{11}{2} + \frac{19}{4} + 4 + \frac{13}{4} + \frac{5}{2} + \frac{7}{4} + 1 + \frac{1}{4} - \frac{1}{2} - \frac{5}{4} - 2 - \dots$ is an arithmetic series since each number in the sum is $\frac{3}{4}$ less than the previous number.

NUMBERS 7

Sum Of An Arithmetic Series: The sum of the first n terms of an arithmetic series equals $A_n = a_1 + a_2 + a_3 + ... + a_n = \frac{1}{2}n(a_1 + a_n)$ where a_1 is the first term of the arithmetic series and $a_n = a_1 + (n-1)d$ is the nth term of the arithmetic series. d is the difference between each consecutive pair of terms.

Sum of first N integers: $1+2+3+4+...+N=\frac{1}{2}N(N+1)$.

<u>Ex:</u> What is the sum of the series $\frac{11}{2} + \frac{19}{4} + 4 + \frac{13}{4} + \frac{5}{2} + \frac{7}{4} + 1 + \frac{1}{4} - \frac{1}{2} - \frac{5}{4}$?

Soln:
$$n = 10$$
, $d = -\frac{3}{4}$, $a_1 = \frac{11}{2}$, $a_{10} = -\frac{5}{4}$, so $A_{10} = \frac{1}{2} \cdot 10 \left(\frac{11}{2} - \frac{5}{4} \right) = 5 \left(\frac{22}{4} - \frac{5}{4} \right) = 5 \left(\frac{17}{4} \right) = \frac{85}{4}$.

Geometric Series: A geometric series is the sum of a geometric sequence.

Ex: $27+9+3+1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...$ is a geometric series since each number is $\frac{1}{3}$ times the previous number.

Ex: $-\frac{1}{4}+1-4+16$ is a geometric series since each number is -4 times the previous number.

Sum Of A Geometric Series: The sum of the first n terms of a geometric series equals

$$G_n = g_1 \left(1 + r + r^2 + r^3 + \dots + r^{n-1} \right) = g_1 \left(\frac{1 - r^n}{1 - r} \right) \text{ where } \boxed{\mathbf{r} < \mathbf{1}} \text{ is the ratio between each}$$

consecutive pair of terms, and g_1 is the first term in the geometric series.

Ex: What is the sum of the series $27+9+3+1+\frac{1}{3}+\frac{1}{9}$?

Soln:
$$n = 6$$
, so $G_6 = 27\left(1 + \frac{1}{3} + \frac{1}{3^2} + \dots + \frac{1}{3^5}\right)$, so $r = \frac{1}{3}$, so

$$G_6 = 27 \left(\frac{1 - \frac{1}{3^6}}{1 - \frac{1}{3}} \right) = \frac{81}{2} \left(1 - \frac{1}{3^6} \right) = \frac{1}{2} \left(81 - \frac{3^4}{3^6} \right) = \frac{1}{2} \left(81 - \frac{1}{3^2} \right) = \frac{1}{2} \left(81 - \frac{1}{9} \right) = \frac{1}{2} \left(80 \frac{8}{9} \right) = 40 \frac{4}{9}.$$

Sum Of An Infinite Geometric Series: The sum of an infinite number of terms of a geometric

series equals $G_{\infty} = g_1(1+r+r^2+r^3+...) = \frac{g_1}{1-r}$ where r < 1 is the ratio between each

consecutive pair of terms. The ... stands for all of the remaining (infinite) number of terms in the series.

Ex: What is the sum of the series $27+9+3+1+\frac{1}{3}+\frac{1}{9}+\dots$?

Soln:
$$G_{\infty} = 27 \left(1 + \frac{1}{3} + \frac{1}{3^2} + \dots \right)$$
 so $r = \frac{1}{3}$ and $G_{\infty} = \frac{27}{1 - \frac{1}{3}} = \frac{27}{\frac{2}{3}} = \frac{3}{2} \cdot 27 = \frac{81}{2} = 40 \cdot \frac{1}{2}$.

Numbers 7 Homework Problems (NO CALCULATORS)

- a) $(81)^{1/2} = 3^m$. Find m.
- b) How many prime numbers less than 30 are divisible by 3 or 5?
- c) The four digit number 374n is divisible by 18. Find the unit digit n.
- d) Determine the units digit of $5^{17} 5$.
- e) Determine the units digit of $17^{13} 17$.
- f) What is the 15^{th} term in the arithmetic sequence $-17, -14, -11, \dots$?
- g) What is the 21^{st} term in the arithmetic sequence $26, 22, 18, \dots$?
- h) What is the sum of the first 15 terms in the sequence of problem (f)?
- i) What is the sum of the first 21 terms in the sequence of problem (g)?
- j) What is the 6^{th} term in the geometric sequence 28, 14, ...?
- k) What is the 10^{th} term in the geometric sequence 2187, -729, ...?
- 1) What is the sum of the first 6 terms of the geometric sequence of problem (j)?
- m) What is the sum of the first 10 terms of the geometric sequence of problem (j)?
- n) What is the sum of all of the terms of the geometric sequence of problem (j)?
- o) What is the sum of all of the terms of the geometric sequence of problem (k)?
- p) The sum of two consecutive integers is 127. What is the largest integer?
- q) The sum of three consecutive even integers is -198. What is the smallest integer?
- r) Express as a decimal: $0.096 \div (1.44)^{1/2}$.
- s) What is the product of the digits in the sum: 41,874 + 14,676?
- t) Express in simplest form: $\sqrt{10\frac{9}{16}}$.
- u) Evaluate: $75^{-1.8}(3^{1.3})(45^{-2.1})(15)^{4.7}$.